skip to main content


Search for: All records

Creators/Authors contains: "Kochunov, Peter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Schizophrenia (SZ), schizoaffective disorder (SAD), and psychotic bipolar disorder share substantial overlap in clinical phenotypes, associated brain abnormalities and risk genes, making reliable diagnosis among the three illness challenging, especially in the absence of distinguishing biomarkers. This investigation aims to identify multimodal brain networks related to psychotic symptom, mood, and cognition through reference-guided fusion to discriminate among SZ, SAD, and BP.

    Psychotic symptom, mood, and cognition were used as references to supervise functional and structural magnetic resonance imaging (MRI) fusion to identify multimodal brain networks for SZ, SAD, and BP individually. These features were then used to assess the ability in discriminating among SZ, SAD, and BP. We observed shared links to functional and structural covariation in prefrontal, medial temporal, anterior cingulate, and insular cortices among SZ, SAD, and BP, although they were linked with different clinical domains. The salience (SAN), default mode (DMN), and fronto-limbic (FLN) networks were the three identified multimodal MRI features within the psychosis spectrum disorders from psychotic symptom, mood, and cognition associations. In addition, using these networks, we can classify patients and controls and distinguish among SZ, SAD, and BP, including their first-degree relatives. The identified multimodal SAN may be informative regarding neural mechanisms of comorbidity for psychosis spectrum disorders, along with DMN and FLN may serve as potential biomarkers in discriminating among SZ, SAD, and BP, which may help investigators better understand the underlying mechanisms of psychotic comorbidity from three different disorders via a multimodal neuroimaging perspective.

     
    more » « less
  2. Imaging genomics is a rapidly evolving field that combines state-of-the-art bioimaging with genomic information to resolve phenotypic heterogeneity associated with genomic variation, improve risk prediction, discover prevention approaches, and enable precision diagnosis and treatment. Contemporary bioimaging methods provide exceptional resolution generating discrete and quantitative high-dimensional phenotypes for genomics investigation. Despite substantial progress in combining high-dimensional bioimaging and genomic data, methods for imaging genomics are evolving. Recognizing the potential impact of imaging genomics on the study of heart and lung disease, the National Heart, Lung, and Blood Institute convened a workshop to review cutting-edge approaches and methodologies in imaging genomics studies, and to establish research priorities for future investigation. This report summarizes the presentations and discussions at the workshop. In particular, we highlight the need for increased availability of imaging genomics data in diverse populations, dedicated focus on less common conditions, and centralization of efforts around specific disease areas. 
    more » « less